## NAVAL POSTGRADUATE SCHOOL Monterey, California

EC 3210 FINAL EXAM 12/89Po

- This exam is open book and notes.
- There are five problems; each is equally weighted.
- Partial credit will be given; be sure to do some work on each problem.
- Be sure to include units in your answers.
- Please circle or underline your answers.
- $\bullet$  Show ALL work.
- Write only your name on this sheet.
- Exams and course grades will be available in the ECE Office in Sp 437 on Tuesday, 26 December.

| Name: |  |
|-------|--|
|       |  |
|       |  |

1. The carbon–monoxide (CO) laser is a four–level laser whose energy levels have the properties listed below. The laser operates at a cryogenic temperature of 77K at a pressure of 10 Torr. Write an expression for the linewidth function  $g(\nu)$  if the laser is lifetime and collision broadened. (The collision cross–section for a CO–CO collision is  $7.03 \times 10^{-21}$  m<sup>-2</sup>.)

| Energy level | Energy (eV) | Lifetime ( $\mu$ s)  |
|--------------|-------------|----------------------|
| 3            | 3.10        | $1.0 \times 10^{-3}$ |
| 2            | 1.91        | 2.0                  |
| 1            | 1.5         | 0.10                 |
| Ground       | 0           | $\infty$             |

(Note: This data is fictitious and does not represent the properties of an actual CO laser.)

- 2. A Gaussian laser beam ( $\lambda = 800$  nm) propagates from left to right. The beam has a spot size of 8 mm and a radius of curvature of phase of +15 m at a location that is 25 m from the origin (of the x-y-z coordinate system). Find the beam spot size and radius of curvature of the phase at a location that is 9.5 m from the origin.
- 3. A greybody emitter has an emissivity of 0.8 and a temperature of 500K.
  - (a) Calculate the wavelength of peak spectral photon emittance. (5 points)
  - (b) Suppose that the emissivity is reduced to a value that is 50% of its original value and that the temperature is raised to a valued that is 110% of its initial value. Calculate the factor by which the spectral photon emittance will change at the wavelength calculated in Part a. (15 points)
- 4. A mode–locked laser produces a train of pulses having a peak power of 10 watts, an average power of 50 mW, and a period of 60 ps. Calculate the longitudinal coherence length of this laser.
- 5. Calculate the required unsaturated population inversion density (in units of atoms·m<sup>-3</sup>) to achieve an unsaturated gain coefficient of 0.5 m<sup>-1</sup> in CO<sub>2</sub>. The transition wavelength is 10.6  $\mu$ m and the Einstein absorption coefficient is  $A_{21} = 200 \text{ s}^{-1}$ . The transition is Doppler-broadened with a temperature of 400K. You may assume that n = 1.